3.796 \(\int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=89 \[ -\frac {2 a (b B-a C) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b^2 d \sqrt {a-b} \sqrt {a+b}}+\frac {x (b B-a C)}{b^2}+\frac {C \sin (c+d x)}{b d} \]

[Out]

(B*b-C*a)*x/b^2+C*sin(d*x+c)/b/d-2*a*(B*b-C*a)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/b^2/d/(a-b)^
(1/2)/(a+b)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {3023, 12, 2735, 2659, 205} \[ -\frac {2 a (b B-a C) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b^2 d \sqrt {a-b} \sqrt {a+b}}+\frac {x (b B-a C)}{b^2}+\frac {C \sin (c+d x)}{b d} \]

Antiderivative was successfully verified.

[In]

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x]),x]

[Out]

((b*B - a*C)*x)/b^2 - (2*a*(b*B - a*C)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*b^2*Sq
rt[a + b]*d) + (C*Sin[c + d*x])/(b*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx &=\frac {C \sin (c+d x)}{b d}+\frac {\int \frac {(b B-a C) \cos (c+d x)}{a+b \cos (c+d x)} \, dx}{b}\\ &=\frac {C \sin (c+d x)}{b d}+\frac {(b B-a C) \int \frac {\cos (c+d x)}{a+b \cos (c+d x)} \, dx}{b}\\ &=\frac {(b B-a C) x}{b^2}+\frac {C \sin (c+d x)}{b d}-\frac {(a (b B-a C)) \int \frac {1}{a+b \cos (c+d x)} \, dx}{b^2}\\ &=\frac {(b B-a C) x}{b^2}+\frac {C \sin (c+d x)}{b d}-\frac {(2 a (b B-a C)) \operatorname {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{b^2 d}\\ &=\frac {(b B-a C) x}{b^2}-\frac {2 a (b B-a C) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} b^2 \sqrt {a+b} d}+\frac {C \sin (c+d x)}{b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 85, normalized size = 0.96 \[ \frac {-\frac {2 a (a C-b B) \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {b^2-a^2}}\right )}{\sqrt {b^2-a^2}}+(c+d x) (b B-a C)+b C \sin (c+d x)}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x]),x]

[Out]

((b*B - a*C)*(c + d*x) - (2*a*(-(b*B) + a*C)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 +
 b^2] + b*C*Sin[c + d*x])/(b^2*d)

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 322, normalized size = 3.62 \[ \left [-\frac {2 \, {\left (C a^{3} - B a^{2} b - C a b^{2} + B b^{3}\right )} d x - {\left (C a^{2} - B a b\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - 2 \, {\left (C a^{2} b - C b^{3}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{2} b^{2} - b^{4}\right )} d}, -\frac {{\left (C a^{3} - B a^{2} b - C a b^{2} + B b^{3}\right )} d x - {\left (C a^{2} - B a b\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - {\left (C a^{2} b - C b^{3}\right )} \sin \left (d x + c\right )}{{\left (a^{2} b^{2} - b^{4}\right )} d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

[-1/2*(2*(C*a^3 - B*a^2*b - C*a*b^2 + B*b^3)*d*x - (C*a^2 - B*a*b)*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) +
(2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*
x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) - 2*(C*a^2*b - C*b^3)*sin(d*x + c))/((a^2*b^2 - b^4)*d), -((C*a^3 - B*a^
2*b - C*a*b^2 + B*b^3)*d*x - (C*a^2 - B*a*b)*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin
(d*x + c))) - (C*a^2*b - C*b^3)*sin(d*x + c))/((a^2*b^2 - b^4)*d)]

________________________________________________________________________________________

giac [A]  time = 0.21, size = 142, normalized size = 1.60 \[ -\frac {\frac {{\left (C a - B b\right )} {\left (d x + c\right )}}{b^{2}} - \frac {2 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )} b} + \frac {2 \, {\left (C a^{2} - B a b\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2}} b^{2}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

-((C*a - B*b)*(d*x + c)/b^2 - 2*C*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 + 1)*b) + 2*(C*a^2 - B*a*b)*(p
i*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sq
rt(a^2 - b^2)))/(sqrt(a^2 - b^2)*b^2))/d

________________________________________________________________________________________

maple [B]  time = 0.13, size = 172, normalized size = 1.93 \[ -\frac {2 a \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right ) B}{d b \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {2 a^{2} \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right ) C}{d \,b^{2} \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {2 C \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d b \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{d b}-\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C a}{d \,b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x)

[Out]

-2/d*a/b/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*B+2/d*a^2/b^2/((a-b)*(a+b))^
(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*C+2/d/b*C*tan(1/2*d*x+1/2*c)/(1+tan(1/2*d*x+1/2*c)^
2)+2/d/b*arctan(tan(1/2*d*x+1/2*c))*B-2/d/b^2*arctan(tan(1/2*d*x+1/2*c))*C*a

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more details)Is 4*b^2-4*a^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 2.42, size = 541, normalized size = 6.08 \[ \frac {2\,C\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,\left (a^2-b^2\right )}-\frac {2\,B\,b\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,\left (a^2-b^2\right )}-\frac {C\,b\,\sin \left (c+d\,x\right )}{d\,\left (a^2-b^2\right )}+\frac {2\,B\,a^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b\,d\,\left (a^2-b^2\right )}-\frac {2\,C\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^2\,d\,\left (a^2-b^2\right )}+\frac {B\,a\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b\,d\,\sqrt {b^2-a^2}}-\frac {B\,a\,\ln \left (\frac {b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b\,d\,\sqrt {b^2-a^2}}-\frac {C\,a^2\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^2\,d\,\sqrt {b^2-a^2}}+\frac {C\,a^2\,\ln \left (\frac {b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^2\,d\,\sqrt {b^2-a^2}}+\frac {C\,a^2\,\sin \left (c+d\,x\right )}{b\,d\,\left (a^2-b^2\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(a + b*cos(c + d*x)),x)

[Out]

(2*C*a*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(d*(a^2 - b^2)) - (2*B*b*atan(sin(c/2 + (d*x)/2)/cos(c/2 +
 (d*x)/2)))/(d*(a^2 - b^2)) - (C*b*sin(c + d*x))/(d*(a^2 - b^2)) + (2*B*a^2*atan(sin(c/2 + (d*x)/2)/cos(c/2 +
(d*x)/2)))/(b*d*(a^2 - b^2)) - (2*C*a^3*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(b^2*d*(a^2 - b^2)) + (B*
a*log((a*sin(c/2 + (d*x)/2) - b*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/cos(c/2 + (d*x)/2))
)/(b*d*(b^2 - a^2)^(1/2)) - (B*a*log((b*sin(c/2 + (d*x)/2) - a*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(b^2 -
a^2)^(1/2))/cos(c/2 + (d*x)/2)))/(b*d*(b^2 - a^2)^(1/2)) - (C*a^2*log((a*sin(c/2 + (d*x)/2) - b*sin(c/2 + (d*x
)/2) + cos(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/cos(c/2 + (d*x)/2)))/(b^2*d*(b^2 - a^2)^(1/2)) + (C*a^2*log((b*si
n(c/2 + (d*x)/2) - a*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/cos(c/2 + (d*x)/2)))/(b^2*d*(b
^2 - a^2)^(1/2)) + (C*a^2*sin(c + d*x))/(b*d*(a^2 - b^2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________